

Short Papers

Exact Analysis of Coupled Nonuniform Transmission Lines with Exponential Power Law Characteristic Impedance

Ahmad Cheldavi

Abstract—A new method for frequency domain and transient analysis of the multiple coupled lossless nonuniform transmission lines with general exponential power law characteristic impedance will be presented in this paper. First, the analytical solution in frequency domain (as *ABCD* and *S*-parameters matrices) is obtained using the Frobenius method, and then a simple fast Fourier transform algorithm is used to find the time-domain response of the lines.

Index Terms—Nonuniform transmission lines, transient response.

I. INTRODUCTION

Nonuniform transmission lines (NTLs) have been widely used in several microwave applications. Analysis and simulation of single and coupled NTLs in both time and frequency domains have been presented in several papers using different methods [1]–[11]. Unfortunately, the general solution for arbitrary NTLs does not exist analytically, unless for some special kinds of transmission lines. For example, [1] presents an exact solution for single ideal linear varied NTL. This solution was extended for the case of two coupled transmission lines in [2]. Single Hermite transmission line was considered in [3]. The authors of [4] consider a single lossless NTL with power law characteristic impedance in time domain and the authors of [5] present a solution for the case of two NTLs with the same power law characteristic impedance using Bessel functions with fractional orders. The same problem was also considered in [6].

Also, several methods have been presented to analyze different kinds of microstrip coupled NTLs. For example, [7] investigated the tapered multiple microstrip lines using the spatial iteration–perturbation approach technique, and [8] analyzed the problem using a time-domain scattering-parameter formulation incorporated with the closed-form expressions of voltage variables for divided short uniform lossless lines. The method of step-lines approximations [9] and a cascaded network chain [10] was also used to solve the same problem.

In this paper, a simple method for analyzing multiple coupled lossless NTLs with exponential power law characteristic impedance (EPLCI) is presented. The geometry under considerations includes M (arbitrary number) of coupled NTLs with the same EPLCI profile. The method of the solution is based on the modal decomposition method [11]. Using the modal decomposition method, the system of coupled partial differential equations are decomposed to a number of uncoupled ordinary wave equations, which are then solved analytically in the frequency domain using the Frobenius method. Using this solution, an exact *ABCD* matrix and *S*-parameter matrix are obtained. Finally, a fast Fourier transform (FFT) algorithm is used to find the transient response.

Manuscript received July 1, 1999.

The author is with the Electrical Engineering Department, Iran University of Science and Technology, Narmak 16844, Tehran, Iran (e-mail: cheldavi@sun.iust.ac.ir).

Publisher Item Identifier S 0018-9480(01)00026-6.

II. ANALYTICAL FREQUENCY-DOMAIN SOLUTION

Consider a system of M -coupled NTLs with the same EPLCI profile. The lengths of the lines are taken to be equal to d . The partial differential equations describing this structure are given by

$$\frac{\partial[V(z)]}{\partial z} + j\omega[L(z)][I(z)] = 0 \quad (1)$$

$$\frac{\partial[I(z)]}{\partial z} + j\omega[C(z)][V(z)] = 0 \quad (2)$$

where $[V(z)]$ and $[I(z)]$ are $M \times 1$ voltage and current vectors defined as

$$[V(z)]^T = [V_1(z) \ V_2(z) \ \dots \ V_M(z)] \quad (3)$$

in which the superscript T indicates the transpose of the matrix (vector), and $V_k(z)$ represents the voltage along the k th line. The same definition can be made for $[I(z)]$. The capacitance and inductance matrices for this system are defined by

$$[C(z)] = \exp(-qz)(1 + pz)^{-2N}[C]_o \quad (4)$$

$$[L(z)] = \exp(qz)(1 + pz)^{2N}[L]_o \quad (5)$$

in which z is the position along the lines, and N (an integer), p , and q are arbitrary constants. $[C]_o$ and $[L]_o$ are constant $M \times M$ matrices. Using the *modal decomposition* method [11], one may decouple (1) and (2) by simultaneously diagonalizing $[L]_o$ and $[C]_o$ matrices. The modal variables are defined by

$$[V^m(z)] = [Q_v][V(z)] \quad (6)$$

$$[I^m(z)] = [Q_i][I(z)]. \quad (7)$$

A simple method to obtain the constant *transfer matrices* $[Q_v]$ and $[Q_i]$ for known $[C]_o$ and $[L]_o$ is given in [11]. Substituting (6) and (7) in (1) and (2) leads to the uncoupled set of partial differential equations for the modal variables as

$$\frac{\partial[V^m(z)]}{\partial z} + \exp(qz)(1 + pz)^{2n}[L^m][I^m(z)] = 0 \quad (8)$$

$$\frac{\partial[I^m(z)]}{\partial z} + \exp(-qz)(1 + pz)^{-2N}[C^m][V^m(z)] = 0. \quad (9)$$

The propagation constant for the k th mode is defined as

$$\beta_{ok}^m = \omega \sqrt{L_k^m C_k^m} \quad (10)$$

where L_k^m and C_k^m are elements of the diagonal matrices $[L^m]$ and $[C^m]$, respectively, defined as

$$[L^m] = [Q_v][L]_o[Q_v]^{-1} \quad (11)$$

$$[C^m] = [Q_i][C]_o[Q_i]^{-1}. \quad (12)$$

Thus, by using proper transfer matrices $[Q_v]$ and $[Q_i]$, the coupled equations (1) and (2) are now decoupled to M uncoupled wave equa-

tions in terms of modal variables. The differential equation describing the voltage of the k th mode in this structure is

$$\frac{\partial^2 V_k^m(y)}{\partial y^2} + \left(q_o + \frac{2N}{y} \right) \frac{\partial V_k^m(y)}{\partial y} + \left(\frac{\beta_{ok}^m}{p} \right)^2 V_k^m(y) = 0. \quad (13)$$

In which $k = 1, 2, \dots, M$, $q_o = (q/p)$, and $y = 1 + pz$. Also, the differential equation describing the current of the k th mode can be derived simply.

In the Frobenius method, we are looking for a solution as

$$V_k^m(y) = \sum_{n=0}^{\infty} a_{kn}^m(s) y^{s+n} \quad (14)$$

in which s and $a_{kn}^m(s)$ are constants to be determined. Substituting (14) in (13) yields

$$\begin{aligned} \sum_{n=0}^{\infty} (s+n)(s+n-1) a_{kn}^m(s) y^{s+n-2} - (q_o y + 2N) \sum_{n=0}^{\infty} \\ \cdot (s+n) a_{kn}^m(s) y^{s+n-2} + \left(\frac{\beta_{ok}^m}{p} \right)^2 \sum_{n=0}^{\infty} a_{kn}^m(s) y^{s+n} \\ = 0. \end{aligned} \quad (15)$$

This leads to the following identities:

$$s(s-1-2N) a_{k0}(s)^m = 0 \quad (16)$$

$$a_{k1}^m(s) = \frac{q_o s}{(s+1)(s-2N)} a_{k0}^m(s) \quad (17)$$

$$a_{k(n+2)}^m(s) = \frac{q_o(s+n+1) a_{k(n+1)}^m(s) - \left(\frac{\beta_{ok}^m}{p} \right)^2 a_{kn}^m(s)}{(n+s+2)(-2N+n+s+1)}. \quad (18)$$

There are two solutions for (16), i.e., for $s = 0$ and $s = 2N + 1$. Convergence of (18) can be easily shown. Therefore, using the recurrence relation (18) with (17) [$a_{k0}^m(s)$ is arbitrary chosen to be equal to one] and applying proper boundary conditions, the voltage expression can be derived exactly for the k th mode as

$$V_k^m(z) = A_0 \sum_{n=0}^{\infty} a_{kn}^m(0) (1+pz)^n + A_1 \sum_{n=0}^{\infty} a_{kn}^m(2N+1) \cdot (1+pz)^{n+2N+1} \quad (19)$$

$a_{k0}^m(0)$ and $a_{kn}^m(2N+1)$ are obtained from (18) for $s = 0$ and $s = 2N+1$, respectively. A_0 and A_1 are determined from boundary conditions. The same procedure can be followed to obtain the solution

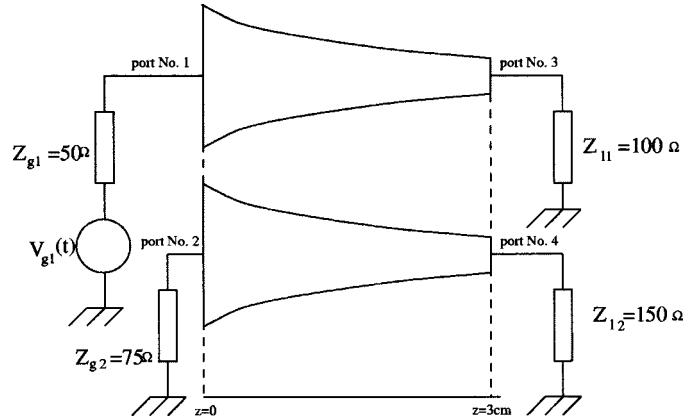


Fig. 1. Two coupled transmission lines with EPLCI.

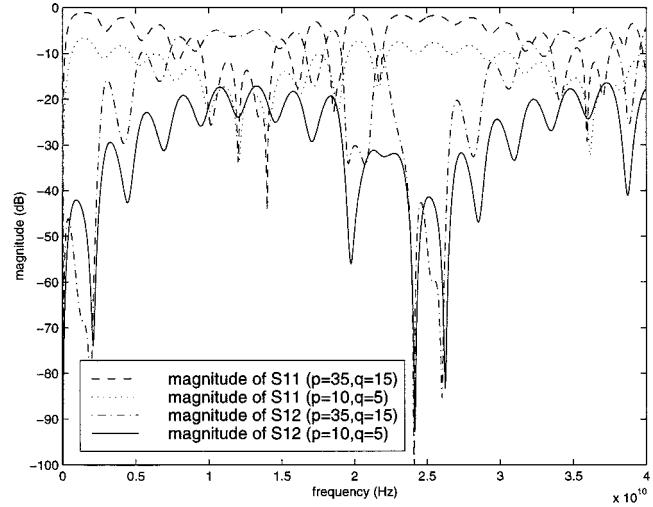


Fig. 2. Comparison of the magnitudes of S_{11} and S_{12} for $p = 35 m^{-1}$, $q = 15 m^{-1}$, and $p = 10 m^{-1}$, $q = 5 m^{-1}$.

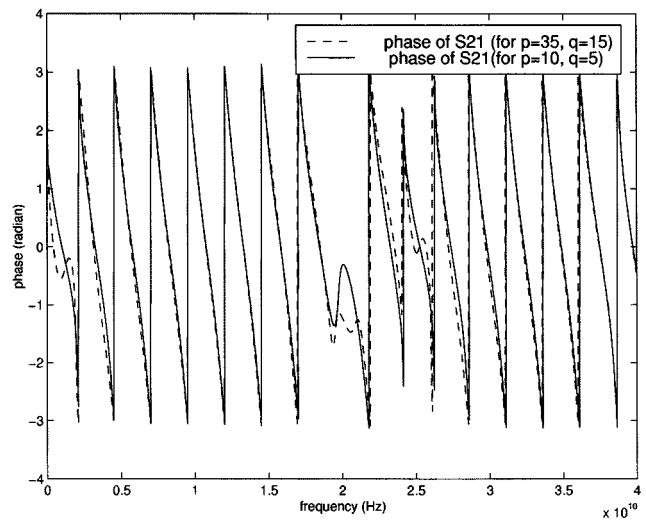


Fig. 3. Comparison of the phase of S_{21} for $p = 35 m^{-1}$, $q = 15 m^{-1}$, and $p = 10 m^{-1}$, $q = 5 m^{-1}$.

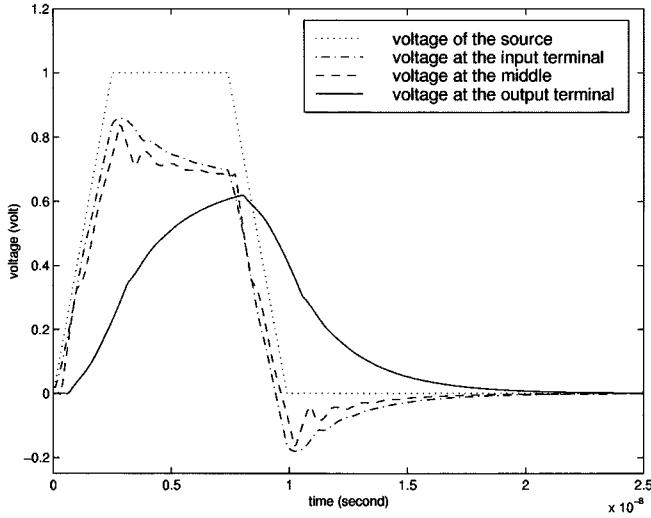


Fig. 4. Input voltage source and voltages at various points of the excited line for $p = 35m^{-1}$, $q = 15m^{-1}$.

for the current k th mode. Therefore, the total $ABCD$ matrix for the modal lines is obtained as

$$\begin{bmatrix} V_1^m(d) \\ I_1^m(d) \\ V_2^m(d) \\ I_2^m(d) \\ \vdots \\ V_{(M-1)}^m(d) \\ I_{(M-1)}^m(d) \\ V_M^m(d) \\ I_M^m(d) \end{bmatrix} = \begin{bmatrix} [T_1^m(d)] & 0 & \cdots & 0 & 0 \\ 0 & [T_2^m(d)] & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & [T_{M-1}^m(d)] & 0 \\ 0 & 0 & \cdots & 0 & [T_M^m(d)] \end{bmatrix} \cdot \begin{bmatrix} V_1^m(0) \\ I_1^m(0) \\ V_2^m(0) \\ I_2^m(0) \\ \vdots \\ V_{(M-1)}^m(0) \\ I_{(M-1)}^m(0) \\ V_M^m(0) \\ I_M^m(0) \end{bmatrix}. \quad (20)$$

Finally, the $ABCD$ matrix ($[T]$) of the main lines can be derived using (6) and (7) in (20). The method presented here is used to obtain the S -parameter's matrix from the $ABCD$ matrix.

III. EXAMPLES AND RESULTS

Consider a set of two coupled lines each with length $d = 3$ cm (see Fig. 1). Here, we assume

$$[L]_o = \begin{bmatrix} 356.8 & 71.36 \\ 71.36 & 356.8 \end{bmatrix} \mu\text{H/m}$$

$$[C]_o = \begin{bmatrix} 124.9 & -12.4 \\ -12.4 & 124.13 \end{bmatrix} \text{pF/m.}$$

Due to the symmetrical property of the system, the S -parameters matrix has only eight independent elements. The magnitude and phase of some of the independent elements of the S -parameters matrix are

compared for two cases $p = 35m^{-1}$, $q = 15m^{-1}$, and $p = 10m^{-1}$, $q = 5m^{-1}$, both for $N = 1$, in Figs. 2-3.

The time-domain response in this structure can be obtained using the FFT algorithm. The voltage waveforms at the input terminals of the lines for the case $p = 35 \text{ m}^{-1}$, $q = 15 \text{ m}^{-1}$, and $N = 1$ is shown in Fig. 4.

IV. CONCLUSIONS

An exact $ABCD$ and S -parameter's matrices for the system of coupled lossless NTLs with general EPLCI have been presented in this paper. The transient voltage and current at various points of the lines are derived using the FFT algorithm. This approach can be used for several microwave applications such as filter and interconnect matching network design. The presented method can be generalized to consider the effect of the external electromagnetic fields, which are the subject of the author's future work.

REFERENCES

- [1] K. Lu, "An efficient method for analysis of arbitrary nonuniform transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. 45, pp. 9-14, Jan. 1997.
- [2] A. Cheldavi, "Exact analysis of externally excited coupled linear tapered nonuniform transmission lines," in *Proc. Int. Electromag. Compat. Symp.*, Tokyo, Japan, May 17-21, 1999.
- [3] M. N. S. Swamy and B. O. Battacharyya, "Hermite lines," *Proc. IEEE*, vol. 54, pp. 1577-1578, 1966.
- [4] H. Curtins and A. V. Shah, "Step response of lossless nonuniform transmission lines with power-law characteristic impedance function," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, pp. 1210-1212, Nov. 1985.
- [5] K. Kobayashi, Y. Nemoto, and R. Sato, "Equivalent circuits of binomial form nonuniform coupled transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 817-824, Aug. 1981.
- [6] A. Cheldavi, "Frequency domain analysis of coupled transmission lines with power law characteristic impedance," in *Proc. Int. Symp. Electromag. Compat.*, Tokyo, Japan, May 17-21, 1999.
- [7] M. A. Mehalic and R. Mitta, "Investigation of tapered multiple microstrip lines for VLSI circuits," *IEEE Trans. Microwave Theory Tech.*, vol. 38, pp. 1559-1566, Nov. 1990.
- [8] K. S. Oh and J. E. Schutt-Aine, "Transient analysis of coupled tapered transmission lines with arbitrary nonlinear terminations," *IEEE Trans. Microwave Theory Tech.*, vol. 41, pp. 268-273, Feb. 1993.
- [9] A. Cheldavi, S. Safavi Naeini, and M. Kamarei, "Time-domain analysis of nonuniform coupled planar lines in VLSI circuits," in *Proc. PACRIM'99*, Victoria, BC, Canada.
- [10] J.-F. Mao and Z.-F. Li, "Analysis of time response of nonuniform multiconductor transmission line with a method of equivalent cascaded network chain," *IEEE Trans. Microwave Theory Tech.*, vol. 40, pp. 948-954, May 1992.
- [11] G.-T. Lei, G.-W. Pan, and B. K. Gilbert, "Examination, clarification, and simplification of modal decoupling method for multiconductor transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. 43, pp. 2090-2099, Sept. 1995.