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Exact Analysis of Coupled Nonuniform Transmission Lines
with Exponential Power Law Characteristic Impedance

Ahmad Cheldavi

Abstract—A new method for frequency domain and transient analysis of
the multiple coupled lossless nonuniform transmission lines with general
exponential power law characteristic impedance will be presented in this
paper. First, the analytical solution in frequency domain (as and

-parameters matrices) is obtained using the Frobenius method, and then
a simple fast Fourier transform algorithm is used to find the time-domain
response of the lines.

Index Terms—Nonuniform transmission lines, transient response.

I. INTRODUCTION

Nonuniform transmission lines (NTLs) have been widely used in
several microwave applications. Analysis and simulation of single and
coupled NTLs in both time and frequency domains have been pre-
sented in several papers using different methods [1]–[11]. Unfortu-
nately, the general solution for arbitrary NTLs does not exist analyti-
cally, unless for some special kinds of transmission lines. For example,
[1] presents an exact solution for single ideal linear varied NTL. This
solution was extended for the case of two coupled transmission lines
in [2]. Single Hermite transmission line was considered in [3]. The
authors of [4] consider a single lossless NTL with power law char-
acteristic impedance in time domain and the authors of [5] present a
solution for the case of two NTLs with the same power law charac-
teristic impedance using Bessel functions with fractional orders. The
same problem was also considered in [6].

Also, several methods have been presented to analyze different
kinds of microstrip coupled NTLs. For example, [7] investigated the
tapered multiple microstrip lines using the spatial iteration–pertur-
bation approach technique, and [8] analyzed the problem using a
time-domain scattering-parameter formulation incorporated with the
closed-form expressions of voltage variables for divided short uniform
lossless lines. The method of step-lines approximations [9] and a
cascaded network chain [10] was also used to solve the same problem.

In this paper, a simple method for analyzing multiple coupled
lossless NTLs with exponential power law characteristic impedance
(EPLCI) is presented. The geometry under considerations includesM

(arbitrary number) of coupled NTLs with the same EPLCI profile.
The method of the solution is based on the modal decomposition
method [11]. Using the modal decomposition method, the system of
coupled partial differential equations are decomposed to a number of
uncoupled ordinary wave equations, which are then solved analyt-
ically in the frequency domain using the Frobenius method. Using
this solution, an exactABCD matrix andS-parameter matrix are
obtained. Finally, a fast Fourier transform (FFT) algorithm is used to
find the transient response.
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II. A NALYTICAL FREQUENCY-DOMAIN SOLUTION

Consider a system ofM -coupled NTLs with the same EPLCI pro-
file. The lengths of the lines are taken to be equal tod. The partial
differential equations describing this structure are given by

@[V (z)]

@z
+ j![L(z)][I(z)] = 0 (1)

@[I(z)]

@z
+ j![C(z)][V (z)] = 0 (2)

where[V (z)] and[I(z)] areM�1 voltage and current vectors defined
as

[V (z)]T = [V1(z) V2(z) � � � VM (z)] (3)

in which the superscriptT indicates the transpose of the matrix
(vector), andVk(z) represents the voltage along thekth line. The same
definition can be made for[I(z)]. The capacitance and inductance
matrices for this system are defined by

[C(z)] = exp(�qz)(1 + pz)�2N [C]o (4)

[L(z)] = exp(qz)(1 + pz)2N [L]o (5)

in whichz is the position along the lines, andN (an integer),p, andq
are arbitrary constants.[C]o and[L]o are constantM �M matrices.
Using themodal decompositionmethod [11], one may decouple (1)
and (2) by simultaneously diagonalizing[L]o and[C]o matrices. The
modal variables are defined by

[V m(z)] = [Qv][V (z)] (6)

[Im(z)] = [Qi][I(z)]: (7)

A simple method to obtain the constanttransfer matrices[Qv] and[Qi]
for known[C]o and[L]o is given in [11]. Substituting (6) and (7) in (1)
and (2) leads to the uncoupled set of partial differential equations for
the modal variables as

@[V m(z)]

@z
+ exp(qz)(1 + pz)2n[Lm][Im(z)] = 0 (8)

@[Im(z)]

@z
+ exp(�qz)(1 + pz)�2N [Cm][V m(z)] = 0: (9)

The propagation constant for thekth mode is defined as

�
m

ok = ! Lm
k
Cm

k
(10)

whereLmk andCm

k are elements of the diagonal matrices[Lm] and
[Cm], respectively, defined as

[Lm] = [Qv][L]o[Qi]
�1 (11)

[Cm] = [Qi][C]o[Qv]
�1
: (12)

Thus, by using proper transfer matrices[Qv] and [Qi], the coupled
equations (1) and (2) are now decoupled toM uncoupled wave equa-
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tions in terms of modal variables. The differential equation describing
the voltage of thekth mode in this structure is

@2V m

k (y)

@y2
+ qo +

2N

y

@V m

k (y)

@y
+

�mok
p

2

V m

k (y) = 0:

(13)

In which k = 1; 2; . . . ; M; qo = (q=p), andy = 1 + pz. Also,
the differential equation describing the current of thekth mode can be
derived simply.

In the Frobenius method, we are looking for a solution as

V m

k (y) =

1

n=0

amkn(s)y
s+n (14)

in whichs andamkn(s)are constants to be determined. Substituting (14)
in (13) yields

1

n=0

(s+ n)(s+ n� 1)amkn(s)y
s+n�2

� (qoy + 2N)

1

n=0

� (s+ n)amkn(s)y
s+n�2 +

�mok
p

2 1

n=0

amkn(s)y
s+n

= 0: (15)

This leads to the following identities:

s(s� 1� 2N)ak0(s)
m

= 0 (16)

amk1(s)

=
qos

(s+ 1)(s� 2N)
amk0(s) (17)

amk(n+2)(s)

=

qo(s+ n+ 1)am
k(n+1)(s)�

�mok
p

2

amkn(s)

(n+ s+ 2)(�2N + n+ s+ 1)
: (18)

There are two solutions for (16), i.e., fors = 0 ands = 2N +1. Con-
vergence of (18) can be easily shown. Therefore, using the recurrence
relation (18) with (17) [amk0(s) is arbitrary chosen to be equal to one]
and applying proper boundary conditions, the voltage expression can
be derived exactly for thekth mode as

V m

k (z) = A0

1

n=0

amkn(0)(1+ pz)n + A1

1

n=0

amkn(2N + 1)

�(1 + pz)n+2N+1 (19)

amkn(0) and amkn(2N + 1) are obtained from (18) fors = 0 and
s = 2N + 1, respectively.A0 andA1 are determined from boundary
conditions. The same procedure can be followed to obtain the solution

Fig. 1. Two coupled transmission lines with EPLCI.

Fig. 2. Comparison of the magnitudes ofS andS for p = 35m , q =
15m , andp = 10m , q = 5m .

Fig. 3. Comparison of the phase ofS for p = 35m , q = 15m , and
p = 10m , q = 5m .
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Fig. 4. Input voltage source and voltages at various points of the excited line
for p = 35m , q = 15m .

for the currentkth mode. Therefore, the totalABCD matrix for the
modal lines is obtained as

V m1 (d)

Im1 (d)

V m2 (d)

Im2 (d)
...

V m(M�1)(d)

Im(M�1)(d)

V mM (d)

ImM (d)

=

[Tm1 (d) 0 � � � 0 0

0 [Tm2 (d)] � � � 0 0
...

...
...

...
...

0 0 � � � [TmM�1(d)] 0

0 0 � � � 0 [TmM (d)]

�

V m1 (0)

Im1 (0)

V m2 (0)

Im2 (0)
...

V m(M�1)(0)

Im(M�1)(0)

V mM (0)

ImM (0)

: (20)

Finally, theABCDmatrix([T ]) of the main lines can be derived using
(6) and (7) in (20). The method presented here is used to obtain the
S-parameter’s matrix from theABCD matrix.

III. EXAMPLES AND RESULTS

Consider a set of two coupled lines each with lengthd = 3 cm (see
Fig. 1). Here, we assume

[L]o =
356:8 71:36

71:36 356:8
�H/m

[C]o =
124:9 �12:4

�12:4 124:13
pF/m:

Due to the symmetrical property of the system, theS-parameters
matrix has only eight independent elements. The magnitude and phase
of some of the independent elements of theS-parameters matrix are

compared for two casesp = 35m�1, q = 15m�1, andp = 10m�1,
q = 5m�1, both forN = 1, in Figs. 2–3.

The time-domain response in this structure can be obtained using
the FFT algorithm. The voltage waveforms at the input terminals of
the lines for the casep = 35 m�1, q = 15 m�1, andN = 1 is shown
in Fig. 4.

IV. CONCLUSIONS

An exactABCD andS-parameter’s matrices for the system of cou-
pled lossless NTLs with general EPLCI have been presented in this
paper. The transient voltage and current at various points of the lines
are derived using the FFT algorithm. This approach can be used for sev-
eral microwave applications such as filter and interconnect matching
network design. The presented method can be generalized to consider
the effect of the external electromagnetic fields, which are the subject
of the author’s future work.
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