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Short Papers

Exact Analysis of Coupled Nonuniform Transmission Lines Il. ANALYTICAL FREQUENCY-DOMAIN SOLUTION

with Exponential Power Law Characteristic Impedance Consider a system af/-coupled NTLs with the same EPLCI pro-

file. The lengths of the lines are taken to be equadltdhe partial

Ahmad Cheldavi differential equations describing this structure are given by

Abstract—A new method for frequency domain and transient analysis of IV (2)] . . A
the multiple coupled lossless nonuniform transmission lines with general o~ +JW[L(2)] =0 (1)
exponential power law characteristic impedance will be presented in this AI(2)]
paper. First, the analytical solution in frequency domain (asABC D and 22 4 Jw[C)][V(2)] =0 2
S-parameters matrices) is obtained using the Frobenius method, and then 9z
a simple fast Fourier transform algorithm is used to find the time-domain
response of the lines. where[V'(z)] and[I(z)] areM x 1 voltage and current vectors defined

Index Terms—Nonuniform transmission lines, transient response. as

qoonT . - .
VEI =Mz) Ve(z) - Viu(z)] (©)

. INTRODUCTION

in which the superscripf” indicates the transpose of the matrix

Nonuniform transmission lines (NTLs) have been widely used i(\‘/ector), and/ (=) represents the voltage along thia line. The same

several microwave applications. Analysis and simulation of single apdsinition can be made foff(z)]. The capacitance and inductance
coupled NTLs in both time and frequency domains have been PiRatrices for this system are defined by

sented in several papers using different methods [1]-{11]. Unfortu-
nately, the general solution for arbitrary NTLs does not exist analyti-
cally, unless for some special kinds of transmission lines. For example, [
[1] presents an exact solution for single ideal linear varied NTL. This [L(
solution was extended for the case of two coupled transmission lines

in [2]. Single Herm?te trans_mission line was considered in [3]. Thg, which = is the position along the lines, add (an integer)p, andq
authors of [4] consider a single lossless NTL with power law chagye arpitrary constantC], and[L], are constand/ x M matrices.
acteristic impedance in time domain and the authors of [5] presenyding themodal decompositiomethod [11], one may decouple (1)

solution for the case of two NTLs with the same power law charagnq (2) by simultaneously diagonalizifif], and[C], matrices. The
teristic impedance using Bessel functions with fractional orders. TR&qal variables are defined by

same problem was also considered in [6].

Also, several methods have been presented to analyze different o .
kinds of microstrip coupled NTLs. For example, [7] investigated the V™ ()] =1Q.][V(2)] (6)
tapered multiple microstrip lines using the spatial iteration—pertur- (1" ()] =[Q:][I(2)]- 7
bation approach technique, and [8] analyzed the problem using a
time-domain scattering-parameter formulation incorporated with thesimple method to obtain the constaransfer matrice$Q.,] and[Q:]
closed-form expressions of voltage variables for divided short uniforfgr known[C], and[L]. is given in [11]. Substituting (6) and (7) in (1)

lossless lines. The method of step-lines approximations [9] andaaq (2) leads to the uncoupled set of partial differential equations for
cascaded network chain [10] was also used to solve the same problg{g.modal variables as

In this paper, a simple method for analyzing multiple coupled

2)] = oxp(—qz)(l—i—pz)_QN[C]o 4
)] = exp(a2) (1 + p=)? [T, )

lossless NTLs with exponential power law characteristic impedance AV™(2)] , Im e e
(EPLCI) is presented. The geometry under considerations inclutes 9. +exp(gz)(1+p2) " [L7]I7(2)] =0 (8)
(arbitrary number) of coupled NTLs with the same EPLCI profile. ™ (2)] , CON e
The method of the solution is based on the modal decomposition — g2 T exp(=¢z)(1+pz) " [CT][VT(2)] =0. (9)

method [11]. Using the modal decomposition method, the system of
coupled partial differential equations are decomposed to a numberefe propagation constant for theh mode is defined as
uncoupled ordinary wave equations, which are then solved analyt-
ically in the frequency domain using the Frobenius method. Using qm
. . . . Bor = wr/LTC™
this solution, an exactt BC'D matrix and S-parameter matrix are Dok = WV it

obtained. Finally, a fast Fourier transform (FFT) algorithm is used to
find the transient response. where L} andC}" are elements of the diagonal matridés™] and

[C™], respectively, defined as

(10)

(L] = [QuLL.[Q:]" 11
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tions in terms of modal variables. The differential equation describir
the voltage of thé&th mode in this structure is

poit No. 1 portNo. 3

Z“=100:2

V(. 2N OVi" (s Y
—6‘y2(y) + <q(—, + ﬁ) 7211@) + < p‘) Vi (y) = 0. Zy, =5 ,
(13)

Vgl(t port No. 2
Inwhichk = 1,2,..., M, ¢o = (¢/p), andy = 1 + pz. Also,
the differential equation describing the current of itle mode can be
derived simply. Zy,=T5
In the Frobenius method, we are looking for a solution as

Z,71500

1
[}
|
z=0
o Fig. 1. Two coupled transmission lines with EPLCI.

Vi (y) = ) il (s)y™t" (14)

n=0

in which s anday, (s) are constants to be determined. Substituting (14
in (13) yields

S s+ m)(s 40— Daps ()" "7 = (goy +28) Y

n=0 n=0 g
m 2 2
(ot mafs oy (PR )OS o
= 0. (15)
_ o » ~80F | —— - magnitude of S11 (p=35,q=15) T
This leads to the following identities: : magnitude of S11 (p=10,g=5)
_gol- | ‘= — - magnitude of $12 (p=35,q=15) 4
——  magnitude of S12 (p=10,q=5) i
100 Y 3 T 2 25 3 a5 4
S(S -1 2[\[)(1,/90(8)7” ’ frequency (Hz) x 10"
=0 (16)
api(s) Fig. 2. Comparison of the magnitudes®f; andS:; forp = 35m~—1t,q =
oS m ( 17 15m~!, andp = 10m~1, ¢ = 5m L.
T (s4+1)(s—2N) k() 7
("ﬁ,L+2)(~"’>
amoN 2
, m N Dok m o 4 T T T T T T T
Go(s +n + 1)ag(, 11)(s) < P ) an(s) - — - phase of 21 (for p=35, q=15)
= (18) _— phase of S21(for p=10, g=5)
(n+s+2)(—2N+n+s+1) 3r
. i ]
There are two solutions for (16), i.e., for= 0 ands = 2N + 1. Con- '
vergence of (18) can be easily shown. Therefore, using the recurren: _ * ! ]
relation (18) with (17) &7 (s) is arbitrary chosen to be equal to one] g !
and applying proper boundary conditions, the voltage expression ceg 0 \:
be derived exactly for théth mode as & Y
-1 -
oo oo -2 4
Vi'(2)= Ao D afin(0)(1+p2)" + A1 Y aif (2N +1)
n=0 n=0 —3t ' 4
(14 p2)" TN (19)
0 05 i s 2 25 3 a5
frequency (Hz) X 10"

ay,(0) andaf, (2N + 1) are obtained from (18) fos = 0 and
s = 2N + 1, respectivelyAo and A, are determined from boundary ig. 3. Comparison of the phase §f, for p = 35m=1, ¢ = 15m~—1, and
conditions. The same procedure can be followed to obtain the solutiog- 10m -1, ¢ = 5m ',
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Fig. 4.

forp = 35m—1t, ¢ = 15m—1.

for the currenttth mode. Therefore, the total BC'D matrix for the
modal lines is obtained as

o Vir(d)
1 (d)
VG | I o 0 0
I3'(d) 0 [T3(d) 0 0
1) (d) 0 0 [Thi—1(d)] 0
Itk —1y(d) 0 0 0 [T71(d)]
Vit (d)
L I¥(d)
rovim(0) 1
I (0)
V5"(0)
15(0)
: (20)
Viti-1)(0)
I(3-1)(0)
/11 (0)
L 177 (0)

Finally, theA BC' D matrix([T]) of the main lines can be derived using

(6) and (7) in (20). The method presented here is used to obtain
S-parameter’s matrix from thd BC' D matrix.

I1l. EXAMPLES AND RESULTS

Consider a set of two coupled lines each with lengjth 3 cm (see
Fig. 1). Here, we assume

356.8 71.36
[L)o = {71.36 356.8} pH/m
1249 —124
(€] = {—12.4 124.13} pF/m

Due to the symmetrical property of the system, fiparameters

199

compared for two casgs= 35m ™', ¢ = 15m~ !, andp = 10m !,
¢ = 5m~", both forN = 1, in Figs. 2-3.

The time-domain response in this structure can be obtained using
the FFT algorithm. The voltage waveforms at the input terminals of
the lines forthe case=35m~', ¢ = 15 m~', andN = 1 is shown
in Fig. 4.

IV. CONCLUSIONS

An exactABC' D andS-parameter’s matrices for the system of cou-
pled lossless NTLs with general EPLCI have been presented in this
paper. The transient voltage and current at various points of the lines
are derived using the FFT algorithm. This approach can be used for sev-
eral microwave applications such as filter and interconnect matching
network design. The presented method can be generalized to consider
the effect of the external electromagnetic fields, which are the subject
of the author’s future work.
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